Основы современной криптографии


Цифровые подписи, основанные на симметричных криптосистемах - часть 4


размер ключа подписи: nkS=2nHЧnK.

размер ключа проверки подписи: nС=2nHn.

размер подписи: nS =nHЧnK.

Если, например, в качестве основы в данной схеме будет использован шифр ГОСТ 28147–89 с размером блока n=64  бита и размером ключа nK=256 бит, и для выработки хэш–блоков будет использован тот же самый шифр в режиме выработки имитовставки, что даст размер хэш–блока  nH=64 то размеры рабочих блоков будут следующими:

размер ключа подписи: nkS=2nHЧnK =2Ч64Ч256бит=4096 байт;

размер ключа проверки подписи: nС=2nHn

= 2Ч64Ч64 бит = 1024 байта.

размер подписи: nS =nHЧnK

= 64Ч256 бит = 2048 байт.

Второй недостаток данной схемы, быть может, менее заметен, но столь же серьезен. Дело в том, что пара ключей выработки подписи и проверки подписи могут быть использованы только один раз. Действительно, выполнение процедуры подписи бита сообщения приводит к раскрытию половины секретного ключа, после чего он уже не является полностью секретным и не может быть использован повторно. Поэтому для каждого подписываемого сообщения необходим свой комплект ключей подписи и проверки. Это практически исключает возможность использования рассмотренной схемы Диффи–Хеллмана в первоначально предложенном варианте в реальных системах ЭЦП.

Однако, несколько лет назад Березин и Дорошкевич предложили модификацию схемы Диффи–Хеллмана, фактически устраняющую ее недостатки.

Центральным в этом подходе является алгоритм «односторонней криптографической прокрутки», который в некотором роде может служить аналогом операции возведения в степень. Как обычно, предположим, что в нашем распоряжении имеется криптографический алгоритм EK с размером блока данных и ключа соответственно n и nK бит, причем nЈnK

Пусть в нашем распоряжении также имеется некоторая функция отображения n–битовых блоков данных в nK–битовые Y=Pn®nK(X),  |X|=n,  |Y|=nK. Определим рекурсивную функцию Rk «односторонней прокрутки» блока данных T

размером n бит k раз (k і 0) при помощи следующей формулы:




Начало  Назад  Вперед



Книжный магазин